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Abstract

Resistance to chemotherapy is a key impediment to successful cancer treatment that has been
intensively studied for the last three decades. Several central mechanisms have been identified as
contributing to the resistance. In the case of multidrug resistance (MDR), the cell becomes
resistant to a variety of structurally and mechanistically unrelated drugs in addition to the drug
initially administered. Mathematical models of drug resistance have dealt with many of the known
aspects of this field, such as pharmacologic sanctuary and location/diffusion resistance, intrinsic
resistance that is therapy independent, therapy-dependent cellular alterations including induced
resistance (dose-dependent) and acquired resistance (dose-independent). In addition, there are
mathematical models that take into account the kinetic/phase resistance, and models that
investigate intra-cellular mechanisms based on specific biological functions (such as ABC
transporters, apoptosis and repair mechanisms). This review covers aspects of MDR that have
been mathematically studied, and explains how, from a methodological perspective, mathematics
can be used to study drug resistance. We discuss quantitative approaches of mathematical analysis,
and demonstrate how mathematics can be used in combination with other experimental and
clinical tools. We emphasize the potential benefits of integrating analytical and mathematical
methods into future clinical and experimental studies of drug resistance.
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1. Introduction

Resistance to chemotherapy is a key impediment to successful cancer treatment that has
been intensively studied for the last three decades. Understanding the biological mechanisms
of drug resistance and developing agents to target those mechanisms are important steps in
the design of new therapies. Several central genes and pathways have been identified as
contributing to the resistance of cancer cells to chemotherapy. Theoretically, abnormalities
could develop from point mutations, gene amplification or other genetic or epigenetic
changes that affect biological functions. Penetration of antineoplastic agents into the cancer
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cell induces their lethal pharmacological effect by interaction with target molecules. Altered
activity of membrane-embedded drug uptake and efflux pumps can inhibit this effect by
reducing intracellular drug accumulation, thereby preventing drug-target interactions. The
primary effect of anticancer drugs is to inflict damage to target molecules, thereby triggering
various cellular signal transduction pathways, leading to cell death or cell cycle arrest. These
secondary effects result in apoptosis or other types of cell death including autophagy,
mitotic catastrophe, necrosis and senescence. Therefore, modifications of these genes and
pathways can mediate anticancer drug resistance. Resistance mechanisms can affect single
drugs or drug targets or multiple drugs simultaneously (MDR). In the case of MDR, the cell
becomes resistant to a variety of structurally and mechanistically unrelated drugs in addition
to the drug initially administered (Figure 1A, (Gillet and Gottesman, 2010; Teicher, 2006)).

Mechanisms of drug resistance are demonstrated in Fig. 1A (Gillet and Gottesman, 2010),
and Fig. 1B shows various means by which these mechanisms might be activated. Cells,
illustrated at the bottom of this figure, can exist in three states: normal, sensitive cancer
cells, and resistant cancer cells. Resistance can be produced either by intrinsic causes (such
as by mutant genes) or by external causes (such as by signaling from the microenvironment).
Resistance can develop as a single step or as multiple steps of random genetic mutations or
any other abnormality occurring in gene products. Such changes can be the consequence of
drug administration, or can be acquired independently of any drug. Furthermore, resistance
to multiple drugs can be achieved by cell location and by drug properties. This situation is
depicted in the lower part of Fig. 1B. A sensitive cancer cell is effectively resistant if a drug
cannot reach it. Fig. 1B includes four scenarios, which can be thought of in terms of four
different initial configurations. Case 1 refers to diffusion resistance in the interior of the
tumor. In contrast, cases 2—4 in Fig. 1B illustrate advanced cancers. Case 2 assumes the
occurrence of independent resistant cells. Case 3 demonstrates a group of resistant cells in
which certain cells may have favorable micro-environmental conditions. This situation will
depend on the tumor’s topology, and local regions may develop different properties when it
comes to drug resistance. In Case 4 of Fig. 1B, we show completely resistant cancer cells.
These cells are either intrinsically resistant or have acquired resistance due to prior
chemotherapy.

Along with biological and clinical research, mathematical approaches have been developed
to model development of drug resistance. Mathematical modeling has a different perspective
from experimental laboratory research and depends on different assumptions, tools, and
methods. All such models are based on experimental or clinical data. Conclusions from
these models can guide researchers to develop new experiments with a more refined focus,
and in some cases can lead to new clinical trials.

Scientists who are unfamiliar with contemporary research in the mathematical sciences may
wonder about the contribution of theoretical modeling to MDR research. More specifically,
one might ask what aspects of MDR can be (and indeed are) studied mathematically? What
can mathematics potentially contribute to the study of MDR? How well is mathematics
integrated into the study of MDR?

While one of the main goals of this review paper is to demonstrate the aspects of MDR that
have been mathematically studied, an even more important goal is to explain how, from a
methodological perspective, mathematics can be used to study drug resistance. We would
also like to emphasize the potential benefits of integrating analytical and mathematical
methods into future clinical and experimental studies of drug resistance. Mathematics should
be viewed as a research tool that can be used to complement other tools in the study of
MDR.
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From an experimental point of view, tremendous progress has been made over the past
decade, and in view of that, a lot of what was done historically with mathematical models
could be considered as outdated. Most of the mathematical studies were based on ABC
transporters as the main mechanism of resistance. Contemporary biological knowledge
shows a substantially more complex picture of drug resistance. Still, we think that there is
great value in discussing the methodologies and the research questions that have been
studied in order to encourage experimentalists to consider mathematics as yet another viable
and even indispensable research methodology. In addition to the somewhat obvious use of
mathematics as a language for analytically quantifying biological processes, it can be used
to compensate for certain shortcomings of experimental techniques. In certain cases,
mathematical analysis can be used as a tool to guide the experimental design.

Several review papers have been published on mathematics and drug resistance (Agur, 2010;
Chapman et al., 2007; Clare et al., 2000; Fister and Panetta, 2000; Foo and Michor, 2010;
Gardner, 2002a; Gardner and Fernandes, 2003; Goldie and Coldman, 1998; Kufe et al.,
2003; Michelson, 1993; Michor et al., 2006; Panagiotopoulou et al., 2010; Piccart-Gebhart,
2003; Retsky et al., 2005; Simon and Norton, 2006; Swierniak et al., 2009; Wodarz and
Komarova, 2005). In view of the present understanding of MDR, it turns out that most of the
review papers have focused on a subset of the issues related to drug resistance. From that
perspective, this paper could be viewed as a “review of reviews” in which we make an
attempt to combine different views into a unified document and present a broader view of
MDR modeling. When considering mathematical modeling, one standard approach to
reviewing models is to discuss different approaches based on their mathematical
frameworks. Since our main goal in this paper is to present a mathematical approach to the
study of MDR, we decided not to focus on the specifics of the mathematical tools. Instead,
we write from the point of view of the biological issues — and accordingly, comment on
some of the ideas that mathematicians have been considering.

Mathematical models for drug resistance have employed methods that span from
deterministic to stochastic, from discrete (agent-based) to continuum models (ordinary
differential equations (ODE), partial differential equations (PDE), delayed differential
equations (DDE), etc.). In deterministic models, the dynamics of a system follow a set of
known rules without any room for random variation. In contrast, with stochastic models the
future evolution is described by random events, and the initial configuration does not
completely determine the future state of the system. Agent-based models provide a
description of a system as a collection of rules of interaction between autonomous agents.
Continuum models provide a more computationally manageable tool when the number of
elements being modeled is very large. In such cases, instead of considering individual
agents, populations that are modeled are typically described as concentrations.

Beyond the specific method that is used, studies can be motivated by specific biological
questions. Other studies focus on mathematical analysis important to theoreticians that deal
with the mathematical nature of the mathematical models, without any particular connection
to a specific biological problem. In any event, the mathematical tool is based on certain
assumptions and therefore is not the issue of importance in this case. We emphasize the
importance and uniqueness of the process in mathematical modeling, starting with
assumptions that are being made prior to modeling. How are these assumptions then
converted into a mathematical model? How is data incorporated into the model? How can a
complex biological structure be captured using a compact set of ideas? How can the
biological question, the data, the assumptions, and the mathematical formulation be
connected? It is equally important to ask what we can learn from a mathematical model as
opposed to a specific experiment.
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In this review, we distinguish between mathematical modeling and statistical modeling. We
also distinguish between mathematical modeling and certain algorithmic approaches (such
as are used for analysis of genomic data). We refer the reader to related reports and reviews
(Crivori et al., 2006; Demel et al., 2009; Woodahl and Ho, 2004). It is important to note that
much of what has been said about mathematical models of MDR is also true of general
aspects of mathematical approaches to address other biomedical problems, not necessarily
for cancer. In the following section, we present several questions that have been addressed
with mathematical and computational methods related to MDR complexity.

2. Mathematical modeling of MDR

Every mathematical model is based on a set of assumptions, in the same way that any
diagram of metabolic pathways is based on experimental data and its interpretations.
Mathematical models rarely include a full description of every component that is involved in
a given process. An educated choice has to be made in terms of what should be included in
the model and what should be left out. An even more fundamental choice is the resolution at
which the mathematical model is written. For example, should the mathematical model
describe the molecular level or is it enough to describe the phenomenon at the cellular level?
Since the first goal of a mathematical model, in many cases, is to capture basic principles
underlying the biological complexity, it is common to see different, yet related, biological
elements, combined into one group.

For example, many mathematical studies have aimed at modeling multidrug resistance, but
in practice, accounted only for resistance to a single drug. A typical assumption is that this
drug represents a family of drugs with the same targets (e.g., drugs related to the cell cycle).
The model is then used to calculate the potential of these drugs to eliminate resistant cancer
cells, or to study the differences between two types of drugs. Another example of
simplification, which is commonly used, is the use of an ABC transporter as a critical
component in the dynamic of resistant cell. Since this transporter effluxes many drugs and
its effect remains several weeks after treatment, the assumption is that this efflux-transporter
family represents multidrug-resistant cells or at least a common type of resistance. In
addition, it is important to note that a single tumor can be thought of being composed of
many sub-populations and several stages of sensitivity can be associated with cells. Most
models consider tumors as composed of two groups, sensitive or resistant. But there are
models in which partial resistance and its relationship to the concentration of the drug is
being addressed (Gardner, 2000; Swierniak et al., 2009).

Mathematical models of drug resistance have dealt with many of the known aspects of the
field. The list includes pharmacologic sanctuary and location/diffusion resistance, intrinsic
resistance (therapy-independent), therapy-dependent cellular alterations including /nduced
resistance (dose-dependent) and acquired'resistance (dose-independent). In addition, there
are mathematical models that take into account kinetic/phase resistance (i.e., resistance that
is based on the phase of the cell cycle/G0), and mathematical models that investigate /ntra-
cellular mechanisms that are based on specific biological functions (such as ABC
transporters, apoptosis and repair mechanisms).

In this section we provide a snapshot of the questions mathematicians study with relation to
drug resistance. Given the enormous activity in the field, such a list cannot be considered
comprehensive. Instead, it should be considered as a guideline to the potential of
mathematical modeling and analysis in the field.

Given the complexity of the mechanisms that cause MDR, it is not surprising that
mathematical models do not incorporate everything that is biologically and clinically known
about the problem. Mathematical models of drug resistance typically focus on one (or more)
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of the underlying mechanisms. This will be discussed in some detail when addressing
specific models. Moreover, there are various fundamental questions that are related to
mathematical modeling in cancer research. Some of the problems that fall under this
category are: mono/multi cellular layer culturing and the differences of drug transport
(Venkatasubramanian et al., 2008), cancer initiation (Michor et al., 2004), cancer growth
(Chapman et al., 2007), metastasis {Clare, 2000 #10, angiogenesis {Mantzaris, 2004 #91},
cancer dormancy (Demicheli et al., 1997; Retsky et al., 1997), tumor-immunology and
immunotherapy, microenvironment, etc. Such problems have been extensively studied by
the mathematical modeling community, in most cases without making any direct connection
with drug resistance mechanisms.

2.1. What is the optimal protocol for drug scheduling in terms of dose and timing?

Scheduling protocols are determined by a range of dependent variables, and studied as such.
The main topics relate to dose intensification, dose densification (continuous or discrete),
protocol escalation, timing and duration. Some models also include different population
dynamics between resistant vs. sensitive cells or cancer vs. normal cells or cancer cells vs.
drug. The timing function may include the cell cycle phase, cancer stages and even surgery.

2.1.1. Kinetic vs. mutation resistance—When considering optimal therapy, the goal is
to maximize the control of the tumor while minimizing toxicity. Norton and Simon proposed
a model (Norton and Simon, 1986, 1977) in which a particular chemotherapeutic treatment
results in a rate of regression in tumor volume that is proportional to the rate of growth for
an unperturbed tumor of that size. They also used the concepts of dose intensification and
especially dose densification. The chance of eradicating the tumor is maximized by
delivering the most effective dose level of drug over as short a time as possible. Thereby,
tumors given less time to grow between treatments are more likely to be eradicated. Norton
and Simon based their theory solely on kinetic resistance, that is, based on the phase of the
cell cycle/GO. In parallel, Goldie and Coldman proposed a different protocol based on
different assumptions and methodology (Goldie and Coldman, 1979; Goldie et al., 1982).
They modeled chemotherapy scheduling with the objective of minimizing the development
of drug resistance based on the occurrence of mutations (Fig. 1B, case 2). When more than
one non-cross-resistant drug is used, it was expected that the treatment should alternate
between drugs as quickly as possible in order to reduce the occurrence of resistant cells, thus
maximizing the probability of cure.

Although most models focus on cure, there are many cases in which tumor eradication does
not occur, either in the context of palliation or failure to cure. In those cases, the goal of
chemotherapy is to extend survival and improve the quality of life. On this subject, Monro
and Gaffney (Monro and Gaffney, 2009) asked whether an intermediate level of
chemotherapy would restrict tumor growth and increase the time of survival in a palliative
setting. Their populations model based on ODEs predicted that reduced chemotherapy
protocols could lead to longer survival times due to competition between resistant and
sensitive tumor cells (Fig. 1B, case 3). Very early treatment was also predicted to quickly
lead to the resistance of most tumor cells, reducing survival time. Also, they claimed that the
common protocol escalation strategy of dose densification could reduce survival times.

To investigate the influence of cancer heterogeneity on treatment impact, Castorina et a/.
(Castorina et al., 2009) reported the dynamic relationship between two populations, primary
tumor cells and a secondary, faster replicating cancer cell population that emerged from the
first population. This dynamic led to growth instability at a certain time point and the timing
of this was key to developing a chemotherapeutic schedule. They suggested a modification
of the “Norton-Simon late intensity” schedule when tumor time evolution is non-uniform.
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They stated that optimal chemotherapeutic dose should be determined by the balance of the
two populations and their specific growth rates.

2.1.2. Optimal control theory—Fister and Panetta (Fister and Panetta, 2000) used
methods of optimal control to maximize the normal bone marrow as well as the dose of the
drug. They predicted that optimal drug delivery would be by periodic continuous infusions.
Swierniak and coauthors (Swierniak et al., 2009) have also studyied the question of optimal
drug delivery. The mathematical models developed in these works have predominantly
focused on modeling gene amplification and considering a stochastic approach to modeling
the evolution of cancer cells (Kimmel et al.; Swierniak et al.). These studies, conducted from
the point of view of control theory, provide a way to determine the minimal dose of the drug
that will guarantee the asymptotic decay of the tumor population. These results were
obtained by using optimization methods on the mathematical models (Smieja et al., 2000;
Swierniak and Smieja, 2005). The calculations of Swierniak ef a/. were done in order to
minimize the total cancer mass at the end of a specified time interval while minimizing the
total dose of the drug. Methods of optimal control were used to study optimal timing and
doses of the treatment.

2.1.3. Continuous infusion—Several models predict that continuous infusion (in
particular of cell cycle phase specific drugs) is more effective than short pulses (Gardner,
2002a; Gardner, 2000; Murray, 1990; Panetta, 1997; Shochat et al., 1999; Swan, 1990; Swan
and Vincent, 1977). This is because continuous infusion prevents tumor re-growth between
treatments, and exposes more cells to the drug when they are in the sensitive phase of the
cell cycle. An obvious problem with a continuous infusion is the following: if the drug is
applied too quickly, then cells that are in an invulnerable part of their cycle may escape
lethal exposure. If, on the other hand, the drug is applied too slowly by continuous infusion,
drug resistance may develop. Gardner (Gardner, 2000) modeled this tradeoff and used his
model to provide insight on how the chance of a cure is connected with the dose and the
type of infusion. The optimal therapy depends on many variables, including the patient’s
tumor cell kinetics. Adaptive therapy, adjusted to the parameters of individual patients, can
be advantageous when based on analytical tools, as provided by mathematical models.

2.2. When several drugs are available, how many drugs should be used? Should they be
used in combination or sequentially?

When several drugs are available to treat a cancer patient, how many drugs should be used
to prevent treatment failure? What are the properties needed for this decision? Should the
drugs be administered simultaneously or sequentially? What is the optimal drug
administration in this case? Are the drug effects synergistic or sub-additive? These questions
have been extensively studied in the mathematical literature and partly relate to schedule
protocol (see (Kufe et al., 2003) and the references therein).

In addition to the schedule question, the two hypotheses of Goldie and Coldman (Goldie and
Coldman, 1979) and Norton and Simon (Norton et al., 1976; Simon and Norton, 2006) also
have different conclusions about drug combinations and sequential strategies. Bonadonna et
al. (Bonadonna et al., 2004; Bonadonna et al., 1995) proposed two dose schedules:
alternating and sequencing of adjuvant cyclophosphamide, methotrexate, and fluorouracil
(CMF) given simultaneously in combination with doxorubicin (A) for patients with high-
risk stage 11 breast cancer. The alternating regimen consisted of two courses of CMF
followed by one course of A, repeated for four cycles ([CMF2—A] x 4), while the
sequential regimen consisted of four courses of A followed by eight courses of CMF
(A4—CMF8). The dose levels, interval lengths, and total treatment duration were identical
in both arms. The Goldie and Coldman theory supported alternating schedules, while the
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Norton and Simon theory supported sequential schedules. A series of clinical trials by the
Cancer and Leukaemia Group B (CALGB) and the American Breast Intergroup (Citron et
al., 2003) were conducted and confirm the hypothesis of Norton and Simon.

Another important question is when treatment should be switched from one type of drug to a
second non-cross-resistant drug. Panetta (Panetta, 1998) defined a model that describes a
heterogeneous tumor population and the effects of chemotherapy. The model specified
conditions that were related to the ratio of resistant to sensitive cells. The model indicated
that the more effective the treatment, the sooner it would be necessary to switch to the
second non-cross-resistant treatment. Birkhead and Gregory (Birkhead and Gregory, 1984)
came to a similar conclusion.

Day and colleagues (Day, 1986) developed a software, named The Oncology Thinking Cap
Software (OncoTCap, http://www.oncotcap.pitt.edu) that performs simulations of the
treatment outcome of a single patient to assess the probability of cure. They examined the
effects of different drug combinations and schedules using continuous-time, stochastic,
birth-death and branching process methods. The model was based on the theory of Goldie &
Coldman (Goldie and Coldman, 1998). Another computational tool was developed by
Gardner (Gardner, 2002b) called Kinetically Tailored Treatment (KITT). This model also
predicts drug combinations, doses, and schedules likely to be effective in reducing tumor
size and prolonging patient life. Treatment strategies may be tailored to individuals based on
tumor cell kinetics. The model incorporates intra-tumor heterogeneity and evolution of drug
resistance, apoptotic rates, and cell division rates.

Komarova and Wodarz (Komarova and Wodarz, 2005) addressed the question of how many
drugs should be used to prevent treatment failure depending on the size of the tumor. Based
on the time that resistance arises (“before the start of treatment™) and the level of turnover
rates (specifically “high™), one of their conclusions was that combination therapy is less
likely to yield an advantage over single-drug therapy. They also demonstrate how their
stochastic mathematical framework can be applied to the treatment of a specific cancer
(chronic myeloid leukemia) with small molecule inhibitors.

Most studies differentiate between cross or non-cross-resistant drugs, while the definition of
cross-resistant does not necessarily specify the mechanistic resistance but only the outcome.
The outcome is the response of a cell/patient to a second drug when the cell/patient is
already resistant to the first drug, regardless of the pathways or biological functions that
cause the resistance. Araujo et al. (Araujo et al., 2005) focused on a specific biochemical
network, the EGFR signaling pathways, and used chemical kinetics equations describing the
changes in concentration of the components over time. They used mathematical modeling to
investigate combination therapy in which multiple nodes in the network are targeted
simultaneously with specific inhibitors. It was demonstrated that the reduction of signaling
is significantly enhanced when several upstream processes are inhibited. It was also
suggested that this strategy could be used with lower doses and consequently would reduce
toxicity.

Recently, Roe-Dale and colleagues (Roe-Dale et al., 20114, b) proposed two models for
sequential regimens of CMF and doxorubicin used in breast cancer and for gastric cancer
chemotherapy involving a taxane (either paclitaxel or docetaxel) coupled with flavopiridol.
Their models incorporate cell cycle specificity and resistance to study why doses of the
same drugs given in different orders result in different clinical outcomes. In the breast
cancer model, they suggest that without any assumptions regarding dose density, it is
resistance rather than cell cycle specificity that is responsible for the superiority of the
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sequential regimen. As for the gastric cancer model, they indicated that for an enhanced
synergistic effect, flavopiridol must be administered following taxane therapy.

2.3. What is the likelihood of the interaction between the drug and an efflux transporter?

Location Resistance (also referred to as Diffusion Resistance) occurs when certain cells are
not exposed to the drug due to their location within the tumor (Fig. 1B, case 1). Drugs and
biologics that are large molecules may have a rather limited perfusion capability and
location resistance is expected to occur in cells that are located away from the capillary bed
(Minchinton and Tannock, 2006; Tredan et al., 2007).

Panagiotopoulou et a/. (Panagiotopoulou et al., 2010) developed a spatiotemporal
mathematical model in order to study the likelihood of the interaction between the drug and
a transporter, specifically P-glycoprotein (P-gp). They then used their model to show that
these interactions are driven by the mechanical interaction between drug molecular weight
and the membrane mechanical properties based on random diffusion of the drug in the
membrane. Such results can potentially assist in designing a type of mechanical control for
drug delivery. The authors listed several future challenges, including pumping kinetics (non-
instantaneous). Therefore, considering drug-pumping Kinetics allows for higher
concentrations of drugs, the design of new therapeutic strategies is based on molecular
weight and the ability to move within the membrane. The second challenge mentioned was
to capture the true complexity of MDR by adding to their model other drug resistance
related transporters. Panagiotopoulou and colleagues also were interested to determine how
a higher pH, as observed in resistant cells, can influence the transverse movement of drugs
as a function of size. This interesting relationship between drug diffusion and tumor
microenvironment was also observed by Venkatasubramanian and colleagues
(Venkatasubramanian et al., 2008) using a wider definition of microenvironment. They
integrated the intracellular metabolism, nutrient and drug diffusion, cell-cycle progression,
cellular drug effects, and drug pharamacokinetics. They raised the important issue of cellular
culturing (monolayer vs. three-dimension cultures) and its impact over the results and
predictions.

For more than twenty years, the P-gp pump has been studied at the molecular and tumor
levels from a mechanistic perspective. Demant et a/. (Demant et al., 1990) developed a
model of drug transport (P-gp) on the molecular level. They asked, “Could endosomal
transport of drug under varying levels of pH account for a major portion of drug efflux in
MDR cell lines?” Their model described three compartments: the extracellular medium, the
cytoplasm, and the endosomal vesicles. From their model they concluded that active
transport is the primary efflux mechanism in MDR cell lines, and that diffusion and
exocytosis are not fast enough to account for the rapid efflux observed experimentally.
Michelson and Slate (Michelson and Slate, 1994, 1992) expanded the model of Demant and
colleagues to incorporate diffusion, the energy dependence of the pump and an inhibitor (to
model MDR reversal). Other molecular models deal with the kinetics of P-gp. The models
of Spoelstra et al. (Spoelstra et al., 1992), Horio et al. (Horio et al., 1990), and Michelson
and Slate are all variations upon the Michaelis-Menten transport theme. The differences
between the three models were mainly in their experimental designs and in the detailed
descriptions of diffusion, energy dependence, etc.

The models that have been developed thus far can be used to make simple predictions about
how MDR reversal agents could be optimally employed to block pumping activity.
However, in order to create a more realistic model, one must consider other complexities of
P-gp functions (e.g., binding sites and the affect on ATPase activity).
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On the tumor level, Michelson and Slate (Michelson and Slate, 1989; Slate and Michelson,
1991) developed a mathematical model that describes drug resistance from the tumor level
(population dynamic) to the cellular level. They used a more mechanistic approach, by
defining it as one or all of the following physiologic pathways: decreased drug uptake,
increased drug efflux, increased degradation/metabolism of drug, increased drug-target
concentration, and altered drug-target properties. They showed that any cell that pumps out
enough drug such that its concentration at the target site remained “low enough”,
significantly enhanced its chances for survival.

2.4. How effective is chemotherapy in eradicating a tumor?

Pharmacological sanctuary occurs when a tumor develops in a site where drug access is
limited by biological barriers such as the blood brain barrier. Tumors sometimes develop
elsewhere and then metastasize to an area of sanctuary. In such cases, it is important to
consider the potential effectiveness of chemotherapy. To address this subject, Wein ef al.
(Wein et al., 2002) developed a mathematical model for the spatiotemporal dynamics of a
brain tumor treated with a specific cytotoxic agent. Their study provided a prediction for the
probability of curing the tumor that requires estimating parameters that are related to the
characteristics of the tumor, to the drug design, and to the drug delivery. With such a model
it is then possible to determine the required circumstances within which such targeted
therapy can be effective. Further general examples of modeling the brain tumors and
treatments reviewed by Deisboeck and colleagues (Deisboeck et al., 2009).

2.5. How is early detection and early therapy connected with the development of drug

resistance?

Among the better known mathematical models of drug resistance are the models of Goldie
and Coldman (Goldie and Coldman, 1998) mentioned earlier. They developed a
probabilistic model of cell mutations. In their model, the mutations were assumed to be
related to the dose of the drug. Such models can then be used in order to study, for example,
the probability that mutations will result in drug resistance. Based on their calculations,
Coldman and Goldie showed that early detection and early therapy can decrease the chances
of developing resistance (the probability of developing resistance increases as the tumor
mass increases). Another outcome of their calculations is that alternating doses of non-cross-
resistant drugs may be better than sequential chemotherapy.

In a recent paper, Tomasetti and Levy (Tomasetti and Levy, 2010) developed a model that
describes how the probability of developing drug resistance depends on the number of long-
lived cancer cells at the time of detection, on the probability of mutations, and on the
turnover rate of the cancer cells. They derived the mathematical model using ODEs for the
wild-type cancer population and branching processes for the mutant cells. By combining the
theoretical results from Tomasetti and Levy, and clinical data on CML (Hochhaus et al.,
2009), Tomasetti (Tomasetti, 2011) showed that early detection and early therapy may
reduce the chances of developing drug resistance.

2.6 What is the probability that at the time of diagnosis resistant cancer cells are already

present?

Michor et al. (Michor et al., 2006) used the mathematical framework of branching processes
to describe the accumulation of mutations in independent lineages. One of the main
questions investigated in their model was the estimation of the risk of developing drug
resistance as a function of the tumor size at the time of diagnosis. They concluded that if the
number of replicating cancer cells exceeds a critical threshold, then the therapeutic outlook
is dim. The therapy is likely to succeed if the number of cancer cells is well below this
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threshold. The chance of successful therapy is much lower for cancers with genetic
instability.

2.7 How fast does the subpopulation of cells that develop drug resistance grow?

Swierniak, Kimmel and Smieja (Swierniak et al., 2009) used their mathematical models to
demonstrate that even though the mutation probability is very low, the resistant population
may grow exponentially. They proved that the population decays only if the average
proliferation time of the resistant subpopulation is sufficiently long compared with the
difference between the de-amplification and amplification probabilities.

2.8 What function best describes the “growth law” of cancer and what are the
consequences of having different growth descriptions?

In spite of the fundamental importance of this question, it still has no agreed-upon answer.
Three commonly used functions for cancer growth are exponential, logistic, and the
Gompertz law (Clare et al., 2000; Guiot et al., 2003; Hart et al., 1998; Kufe et al., 2003;
Retsky et al., 1990; Simon and Norton, 2006; Spratt et al., 1993). Many variations of these
functions appear in the literature. While exponential growth may fit early stages of some
tumors, a function that describes a slower rate of growth, as the tumor size increases, is
expected to provide a better description of the dynamics of tumor growth. This explains why
logistic and Gompertzian laws have been considered as candidates for the solution of this
problem. While Gompertzian growth is the standard function that is the basis for much of
cancer chemotherapy, the goodness of its fit to data is questionable. A major problem with
Gompertzian growth is that it does not allow for temporary dormancy of a tumor. Each
growth description can consequently suggest different treatment strategies (Clare et al.,
2000).

3. Discussion

This paper was written in order to provide an overview of the kind of questions that
mathematicians study in the area of drug resistance. Not every work in the field was
mentioned. We also did not attempt to review all the questions that were addressed in the
literature. Instead, we tried to focus on the quantitative approach of mathematical analysis,
and to demonstrate how mathematics can be used in combination with other experimental
and clinical tools.

When compared with alternative approaches, mathematical modeling has a number of
strengths. Mathematical modeling provides an analytic way of integrating and synthesizing
individual components into a comprehensive picture in order to understand how the system
works as a whole. This procedure falls under what is commonly referred to, these days, as
“systems biology”. It may provide an analytical understanding of a specific mechanism and
can be used as a way to interpret the meaning of experimental data that goes beyond
heuristic arguments. Mathematical modeling may also provide insight into the dynamics of
the system beyond what is available using current experimental methodologies. A good,
validated mathematical model can potentially guide future experiments in terms of the
important parameters that control the dynamics of the problem and therefore what should be
experimentally measured. Such a model can be also used to determine the timing of certain a
measurement. For example, when should a blood sample be collected? More generally, a
mathematical model can be used to choose which experiment should be conducted.

In many cases, the most important contribution of a mathematical model is not just the
validation of the model (based on the data, etc.). It is actually the next step, in which the
mathematical model is used to extrapolate the present knowledge and provide guidance in
terms of what should be the next step. Mathematical modeling does not end with fitting
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curves, or statistically significance results. The dynamic understanding of the system may
help to choose the experimental targets.

One of the main challenges with a simplified mathematical model is to interpret the results
and transform the conclusions to clinical relevance. In numerous cases, close collaborations
among researchers from interdisciplinary backgrounds have overcome this challenge. A
recent interdisciplinary study was reported by Mikkelsen and colleagues (Mikkelsen et al.,
2011). They conducted a clinical trial and showed that infusion duration is an important
determinant of the intracellular accumulation of active methotrexate in acute lymphoblastic
leukemia (ALL) cells in vivo, with more prominent effects in certain subtypes of ALL,
indicating that this must be considered when contemplating changes in treatment to reduce
costs or toxicity. This study was based on a pharmacokinetic model of systemic and cellular
disposition of methotrexate (Panetta et al., 2010; Panetta et al., 2002).

A second example was given by the studies of Citron and co-authors on breast cancer
(Citron, 2008; Citron et al., 2003). These studies were based on the Norton-Simon dose
density hypothesis. Their results indicated improved disease-free and overall survival. Dense
dose adjuvant chemotherapy improves clinical outcomes without increasing toxicity.

Another interdisciplinary approach was the ‘Virtual R&D’ (“virtual patient’), a clinically
validated modeling system that accurately predicts the efficacy and toxicity of various drug
combinations in individuals and in populations. The use of this model in clinical research is
expected to shorten the development time of new drugs. (Agur, 2010).

Clearly, the mechanisms that control the emergence and the evolution of drug resistance are
very complex. The scientific knowledge in this area is rapidly evolving. Deriving
mathematical models to address drug-resistance related questions have been conducted in
parallel with the evolution of understanding on the biomedical side. Existing mathematical
models incorporate some of the known elements of drug resistance.

While the mathematical community has focused on studying certain aspects of the problem,
several other aspects have remained unexplored. In general, most mathematical models do
not address the mechanism of resistance (specific pathways) and its implications. The
microenvironment is routinely studied as part of studying the problem of cancer growth,
without any emphasis (or consideration) of the resistance mechanisms. It is well known that
not all patients that relapse have resistant cells as some sensitive cells may manage to avoid
being exposed to the drug due to their location in the tumor or in the body. Perhaps they
even have the ability to migrate to other physical locations.

It is evident that mathematical models that study the problem of scheduling do not include

different types of resistance. It is also known that not all relapses are caused by mutations.

Diffusion resistance is one of the main reasons for a treatment failure. Modulating the drug
dose is an indirect way to challenge the problem of drug delivery, but this strategy can still
fail in cases where the drug is unable to enter the cells (in a specific location in the tumor/

body). Such limitations imply that it would be helpful to model the drug sequence by their
penetrability and only then by their biological functions.

We would like to emphasize that there is no perfect model that can integrate everything.
Any optimal mathematical model should be adapted to the initial configuration of the tumor
and the specific characteristics of the patient.
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Figure 1.
MDR mechanisms. Cellular mechanisms of drug resistance are demonstrated in Fig. 1A,

which illustrates many of the known molecular mechanisms of drug resistance. Fig. 1B
illustrates the resistance in relation to the population dynamic. Cells can exist in three states:
normal, sensitive cancer cells, and resistant cancer cells. Resistance can be produced either
by inner mechanisms (e.g., mutations) or by external mechanisms (e.g., microenvironment
signals). Resistance can develop as a single step or as multiple steps of random genetic
mutations or any other abnormality occurring in gene products. Such changes can be the
consequence of drug administration, or can be acquired independently of any drug.
Furthermore, resistance to multiple drugs can be achieved by cell location and by drug
properties. Fig. 1B includes four scenarios: diffusion resistance, intrinsic resistance, induced
resistance by the micro-environmental conditions, and completely resistant cancer cells. The
completely resistant cells are either intrinsically resistant or have acquired resistance due to
prior chemotherapy.
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